ПATIBIA UПIVERSITY
OF SCIEПCE AMD TECHחOLOGY
FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF MATHEMATICS AND STATISTICS

QUALIFICATION: Bachelor of science in Applied Mathematics and Statistics	
QUALIFICATION CODE: 35BAMS	LEVEL: 7
COURSE CODE: NUM702S	COURSE NAME: NUMERICAL METHODS 2
SESSION: \quad NOVEMBER 2019	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

FIRST OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER	Dr S.N. NEOSSI NGUETCHUE
MODERATOR:	Prof S.S. MOTSA

INSTRUCTIONS

1. Answer ALL the questions in the booklet provided.
2. Show clearly all the steps used in the calculations. All numerical results must be given using 4 to 5 decimals where necessary unless specified otherwise.
3. All written work must be done in blue or black ink and sketches must be done in pencil.

PERMISSIBLE MATERIALS

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (Including this front page)

Attachments

None

Problem 1 [32 Marks]

1-1. Find the MacLaurin expansion of the function $f(x)=\frac{1}{\sqrt{1-x}}$ about $x_{0}=0$.
1-2. Establish that the Padé approximation $R_{2,2}(x)$ for $f(x)=\frac{1}{\sqrt{1-x}}$ expanded about $x_{0}=0$ is given by

$$
\begin{equation*}
R_{2,2}(x)=\frac{16-12 x+x^{2}}{16-20 x+5 x^{2}} . \tag{12}
\end{equation*}
$$

1-3. Compare the following approximations to $f(x)=\tan (x)$

$$
\begin{aligned}
& \text { Taylor: } T_{9}(x)=1+\frac{x}{3}+\frac{2 x^{2}}{15}+\frac{17 x^{3}}{315}+\frac{62 x^{4}}{2835} \\
& \text { Padé: } R_{5,4}(x)=\frac{945 x-105 x^{3}+x^{5}}{945 x-420 x^{2}+15 x^{4}}
\end{aligned}
$$

on the interval $[0,1.4]$ using 8 equally spaced points x_{k} with $h=0.2$. Your results should be correct to 7 significant digits.

Problem 2 [34 Marks]
2-1. What is an orthogonal polynomial and what is the importance of orthogonal polynomials in leastsquares problems?

2-2. Show that Chebyshev polynomials $\left(T_{k}\right)_{k \geq 0}$, where $T_{k}(x)=\cos \left[k \cos ^{-1}(x)\right]$ for $x \in[-1,1]$, are orthogonal with respect to an appropriate inner product $\langle,$.$\rangle to be defined.$

2-3. Determine the Chebyshev series expansion of $f(x)=\arccos (x)$ in the form.

$$
\begin{equation*}
f(x) \sim \sum_{k=0}^{\infty}{ }^{\prime} c_{k} T_{k}(x)=\frac{1}{2} c_{0} T_{0}(x)+c_{1} T_{1}(x)+c_{2} T_{2}(x)+\cdots \tag{10}
\end{equation*}
$$

where $c_{k}=<f, T_{k}>/<T_{k}, T_{k}>$ for $k \geq 1$ and $c_{0} / 2=<f, T_{0}>/ \pi,<, .>$ being the inner product alluded to in 2-2.
$2-4$. Find the Fourier series of $f(x)=\sin (x), \quad x \in[0, \pi]$.
Problem 3 [34 Marks]
$3-1$. Given the integral

$$
\int_{0.04}^{1} \frac{1}{\sqrt{x}} d x=1.6
$$

Compute $T(J)=R(J, 0)$ for $J=0,1,2$ using the recursive trapezoidal rule.
3-2. State the three-point Gaussian Rule for a continuous function f on the interval $[-1,1]$ and show that the rule is exact for $f(x)=x^{4}+3$.
$3-3$. The matrix A and its inverse are A^{-1} are given below

$$
A=\left[\begin{array}{ccc}
-2 & 1 & 0 \\
1 & -2 & 1 \\
0 & 1 & -2
\end{array}\right], \quad A^{-1}=-\frac{1}{4}\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 3
\end{array}\right] .
$$

- Use a related power method to find the eigenvalue of the matrix A with the smallest absolute value and the associated eigenvector. Start with the vector $\mathbf{x}^{(0)}=(1,0,0)^{T}$ and perform three iterations. [10]

3-4. Assume A is a symmetric matrix and we want to compute all its eigenvalues.
Explain what are Householder's and $Q R$ methods and how they can be used for this purpose.
3-5. Let $w \in \mathbb{R}^{n}$ be a vector such that $w^{T} w=1$. Define the Householder's matrix associated with w and show that it is symmetric and orthogonal.

God bless you !!!

